UNIVERSIDAD INTERNACIONAL DE LA RIOJA

MASTERS THESIS

Building a predictive model for CSR
Backlog at Ericsson

Author- Supervisor:

_ , Luis Miguel GARAY
Erika Meyer KVALEM SOTO °

GALLASATEGUI

A thesis submitted in fulfilment of the requirements

for the

Msc. BIG DATA AND VISUAL ANALYTICS

July 2020

—
UNIR (0 g

ERICSSON


https://www.unir.net/
https://www.unir.net/
https://www.unir.net/
https://www.unir.net/
https://www.unir.net/

Declaration of Authorship

I, Erika Meyer KVALEM SOTO, declare that this thesis titled, 'Building a predictive model for
CSR Backlog at Ericsson’ and the work presented in it is my own. I confirm that this work
submitted for assessment is my own and is expressed in my own words. Any uses made within it
of the works of other authors in any form (e.g., ideas, equations, figures, text, tables, programs)

are properly acknowledged at any point of their use. A list of the references employed is included.



Acknowledgements

To my granmother Aogot Kvalem.
To all the covid-19 victims and health personnel.

I want to truthfully thank my family and my close friends who have always been supporting me

and encouraging me to keep moving forward.

Big thanks to Gongalo San Payo and Filip Gvardjan for their technical support on the machine
learning issues. Thanks to the whole team of Automation and Applications at Ericsson led by

Tamara Gomez. Thanks to my colleagues Kelmer Klimovas, Rafael Jose Pachon, Ivan Lara

Javier Gismero for their unconditional help.

ii



iii

Abstract

The data handled by telecommunications companies nowadays is massive and of increasing
complexity. Traditionally, network incidence management has been done in a reactive way,
however this approach falls short when dealing with such large data load. For this purpose, a
predictive procedure is needed. This work focuses on developing a predictive classification model
for the duration of network incidence management. This process is currently being performed
by telecommunication experts at Ericsson. This project deals with network incidences, called
Customer Service Request (CSR) at Network Managed Services Delivery (NMSD) Support and
Repair organization. The scope is narrowed only for the Customer Unit (CU) Iberia composed of
Spain and Portugal. The predictive model will work on forecasting a classification of time ranges,
for the time without answer of a CSRs. This is an internal Key Performance Indicator (KPI)
known as Backlog. Being able to foresee this value, will allow to perform a pre-emptive network
maintenance by automatically and statistically detecting early anomalies. Thus, optimizing
resource allocation and budget planning by driving internal actions. Moreover, this prediction
is useful information to provide to the customer. In this way the client will know approximately
how long it will take until the incidence is solved. Providing the client with this knowledge will
increase customer satisfaction and the quality of the service. The prediction of Backlog affects
other KPIs such as Turn-Around-Time (TaT). TaT measures the total time since the CSR was
opened until a Formal Answer(RST) is delivered. Backlog and TaT are KPIs closely monitored
by Support and Repair organization to ensure CSR response time. Making predictions about

them will allow to fulfill the high market expectations and remain competitive.
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