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Although experimental studies suggest that low and oscillatory wall shear

stress (WSS) promotes plaque transformation to a more vulnerable phenotype,

this relationship has not been examined in human atherosclerosis progression.

Thus, the aim of this investigation was to examine the association between

oscillatory WSS, in combination with WSS magnitude, and coronary athero-

sclerosis progression. We hypothesized that regions of low and oscillatory

WSS will demonstrate progression towards more vulnerable lesions, while

regions exposed to low and non-oscillatory WSS will exhibit progression

towards more stable lesions. Patients (n ¼ 20) with non-flow-limiting coronary

artery disease (CAD) underwent baseline and six-month follow-up angio-

graphy, Doppler velocity and radiofrequency intravascular ultrasound

(VH-IVUS) acquisition. Computational fluid dynamics models were con-

structed to compute time-averaged WSS magnitude and oscillatory WSS.

Changes in VH-IVUS-defined total plaque and constituent areas were quanti-

fied in focal regions (i.e. sectors; n ¼ 14 235) and compared across

haemodynamic categories. Compared with sectors exposed to low WSS mag-

nitude, high WSS sectors demonstrated regression of total plaque area

( p , 0.001) and fibrous tissue ( p , 0.001), and similar progression of necrotic

core. Sectors subjected to low and oscillatory WSS exhibited total plaque area

regression, while low and non-oscillatory WSS sectors demonstrated total

plaque progression ( p , 0.001). Furthermore, compared with low and

non-oscillatory WSS areas, sectors exposed to low and oscillatory WSS demon-

strated regression of fibrous ( p , 0.001) and fibrofatty ( p , 0.001) tissue and

similar progression of necrotic core ( p ¼ 0.82) and dense calcium ( p ¼ 0.40).

Herein, we demonstrate that, in patients with non-obstructive CAD, sectors sub-

jected to low and oscillatory WSS demonstrated regression of total plaque,

fibrous and fibrofatty tissue, and progression of necrotic core and dense

calcium, which suggest a transformation to a more vulnerable phenotype.
1. Introduction
Despite genetic and systemic risk factors, coronary atherosclerotic lesions are dis-

cretely distributed within the epicardial coronary vessels [1] with a predilection

towards focal sites of complex haemodynamics, i.e. regions exposed to low time-

averaged magnitude and temporally oscillatory wall shear stress (herein, low and

oscillatory WSS) [2,3]. WSS is a spatially localized vector quantity, defined by

both magnitude and direction, that is time-varying due to the pulsatile nature
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Figure 1. Schematic of the presented study. Multi-modal clinical imaging data and intracoronary haemodynamic measures were collected in the cardiac cathe-
terization laboratory. The imaging data were used to construct the 3D lumen geometry, flow extensions were added and the geometry discretized. Acquired patient-
specific haemodynamic data were prescribed as boundary conditions, and pulsatile simulations were performed to evaluate the flow field. These computed data were
post-processed to quantify the haemodynamics metrics of interest (e.g. wall shear stress).
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of arterial blood flow. Thus, complete evaluation of the local

blood flow environment requires characterization of vector

magnitudes and directional changes across the cardiac cycle.

In vitro studies have demonstrated that low and oscillatory

WSS creates a pro-atherogenic environment for lesion develop-

ment mediated through altered endothelial cell gene

expression [4] and function [4,5]. Furthermore, a recent porcine

study reported that regions exposed to low and oscillatory

WSS resulted in the formation of advanced atherosclerotic

plaques, including thin cap fibroatheromas (TCFAs) [6].

Clinical studies have demonstrated plaque progression in

coronary segments exposed to low time-averaged WSS mag-

nitude [7,8] and increased plaque vulnerability in regions of

high WSS [7]. However, the impact of oscillatory WSS and

the co-localization of regions of low and oscillatory WSS

has not been investigated in the clinical setting of plaque pro-

gression. We hypothesized that co-localized regions of low

and oscillatory WSS will exhibit progression of necrotic core

with regression of total plaque and fibrous tissue area, sugges-

tive of greater plaque vulnerability, while regions exposed to

low and non-oscillatory WSS will demonstrate progression of

total plaque and fibrous tissue area, suggestive of progression

towards more stable lesions. Accordingly, we employed our

recently developed framework [9], which allows for the focal

quantification of coronary haemodynamics and plaque pro-

gression, to investigate the relationship between oscillatory

WSS in combination with WSS magnitude and coronary artery

disease (CAD) progression in patients with non-obstructive

CAD treated with optimal medical therapy.
2. Material and methods
2.1. Study population and clinical data acquisition
Patients (n ¼ 20) enrolled in a prospective study evaluating the

association between WSS and radiofrequency intravascular ultra-

sound (i.e. virtual histology–intravascular ultrasound; VH-IVUS)

defined plaque progression were included in this investigation
[7]. Patients presenting with an abnormal non-invasive stress test

or stable angina and determined to have a non-obstructive

lesion requiring physiological evaluation were enrolled. Patients

underwent baseline and six-month follow-up biplane angio-

graphic and IVUS image (phased-array 20 MHz Eagle Eyew

Gold Catheter; Volcano Corp., San Diego, CA, USA) acquisition

(figure 1). Electrocardiogram-gated greyscale and radiofrequency

data were continuously acquired (0.5 mm s21 motorized pullback)

from the distal left anterior descending (LAD) coronary artery up

to the guide catheter in the aorta, sampling approximately 60 mm

of the proximal vessel and stored for offline analysis. Doppler-

derived velocity data were acquired in the left main (LM) coronary

arteries with a 0.01400 (0.3556 mm) monitoring guidewire

(ComboWire; Volcano Corp.). Lipid profiling was performed at

baseline and follow-up, and patients received optimal medical

therapy for cardiovascular risk factors, including 80 mg atorvasta-

tin daily. Emory University’s Institutional Review Board approved

the study and each patient provided informed consent.
2.2. Anatomical reconstruction and computational fluid
dynamics modelling

The end-diastolic three-dimensional (3D) coronary geometry was

constructed by fusion of angiographic views and lumen contours

segmented from IVUS images as previously described [7,9].

Biplane angiographic images of the IVUS catheter in its most

distal position in the LAD prior to pullback were acquired. The

3D spatial position of the catheter was determined via back-

projection image analysis (QAngio XA 3D RE; Medis, Lieden,

The Netherlands) and served as the backbone for vessel recon-

struction. An experienced IVUS reader segmented the lumen

and external elastic membrane (EEM) contours from each

frame of the IVUS pullback (echoPlaque 4.0; INDEC Medical

Systems, Santa Clara, CA, USA). Contours were stacked perpen-

dicular to the catheter centreline at specific locations determined

by the catheter pullback speed and identified time step of each

image (figure 1). As a result of catheter torsion during the pull-

back, the relative orientation of each contour was quantified by

the sequential triangulation algorithm derived from differential

geometry [10]. Major coronary branching vessels (e.g. left
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circumflex, diagonal, septal coronary arteries) were included in

the reconstructions through extraction of diameter and orien-

tation information from angiographic and IVUS data.

Incorporation of branch vessels in the computational geometry

is critical to ensure correct flow rates in distal vessels through

branching flow divisions, and to avoid incorrectly high flow

rates (and WSS values) in these distal regions [11]. The
reconstruction algorithm resulted in an anatomically correct 3D

geometry of the indexed coronary artery.

Computational fluid dynamics (CFD) techniques were

employed, as described previously in detail [9], to quantify the

patient-specific haemodynamic environment and quantify WSS

metrics throughout the reconstructed artery (figure 1). Briefly,

a surface was fitted to the reconstructed lumen surface
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(Geomagic Studio 11; Geomagic, Inc., Research Triangle Park,

NC, USA) and flow extensions were added to the inlet (one

diameter) and outlets (seven diameters). Preliminary investi-

gations confirmed that the inlet extension length allowed

viscous effects to slightly develop the spatially uniform velocity

profile into a blunted profile at the coronary main body

(figure 1), which agrees with experimental observations [3],

and that outlet extension length was sufficiently long not to

affect the flow field in the region of interest (coronary main

body) and for flow to be fully developed at all outlets [7]. The

volume was discretized with tetrahedral and prismatic elements,

which were located adjacent to the lumen boundary, and the

average mesh size was approximately 1.2 million elements per

computational domain (ICEM CFD, ANSYS 15; Ansys, Inc.,

Canonsburg, PA, USA). The computational mesh was imported

into a commercial software package (Fluent 15; ANSYS 15) to

numerically solve the Navier–Stokes and continuity equations.

Patient-specific pulsatile velocity values were extracted from

Doppler data acquired in the LM coronary artery and applied

as a series of spatially uniform profiles (i.e. plug flow) at the

inlet. All outlets were assumed pressure-free (traction-free). Pre-

liminary validation studies were performed to confirm that

application of a pressure-free boundary condition reproduced

the in vivo haemodynamic environment, as quantified with inva-

sive intracoronary measurements, throughout the coronary

territory of interest. Blood was assumed to be an incompressible

Newtonian fluid (r ¼ 1.06 g cm23, m ¼ 3.5 cP). Following sol-

ution convergence, flow-field data were post-processed to

quantify instantaneous WSS vectors at all surface nodes. Vector

WSS magnitudes were temporally averaged across the cardiac

cycle (i.e. time-averaged WSS; figure 2). Temporal oscillatory WSS

was quantified at time points (n) throughout the cardiac cycle by

the WSS angle deviation (WSSAD) [12], which is defined as

WSSADn ¼ arccos
ti � tj

jtij � jtjj

� �
,

where ti and tj are the instantaneous and time-averaged WSS vec-

tors, respectively. At each node, the maximum WSSAD across the
cardiac cycle was used to characterize the oscillatory haemodynamic

environment (figure 2). Previously analysis demonstrated solution

independence from the mesh resolution, as sector time-averaged

WSS values were less than 4% when mesh volume size was reduced

by 50% (3.75� initial mesh size) [9]. Note that oscillatory shear index

(OSI) [2] values were not quantified due to a lack of a predominant

axial direction in the coronary arteries and the difficulty in defining

a positive flow direction in a model with multiple outlets; however,

analogous to OSI, WSSAD quantifies the deviation of an instan-

taneous WSS vector (or vector components) from the temporal

mean vector (WSSAD . 908 � OSI . 0).

Given the positive correlation previously reported bet-

ween low and oscillatory WSS and atherogenesis [2,3,13],

haemodynamic data were categorized, based on previous exper-

imental [5,14] and clinical studies [7,8], to identify sectors

exposed to this WSS environment. Time-averaged WSS

magnitude values were defined as low (,10 dynes cm22), inter-

mediate (10–25 dynes cm22) or high (.25 dynes cm22), and

oscillatory WSS (i.e. WSSAD) values were categorized as low

(,458), intermediate (45–908) or high (.908). Note that an oscil-

latory WSS value . 908 indicates that flow reversal occurred

during the cardiac cycle (i.e. an instantaneous WSS vector was

directed in the opposite direction of the time-averaged WSS

vector; figure 2, location A), which is a flow characteristic com-

monly observed in regions of atherosclerosis development [2],

and high oscillatory WSS largely occurs in a low time-averaged

WSS environment, where fluid momentum is low and flow direc-

tional changes are possible. Finally, sectors were identified that

exhibited both low time-averaged WSS magnitude and high

oscillatory WSS values (i.e. low and oscillatory WSS; figure 2).

2.3. Focal plaque progression and haemodynamics
analysis

VH-IVUS data were derived from offline analysis of each

acquired image (echoPlaque 4.0; INDEC Medical Systems).

Briefly, VH-IVUS is an imaging technique that uses an auto-

mated plaque tissue classification scheme, which identifies

fibrous, fibrofatty, necrotic core and dense calcium tissues, to

create tissue maps (see figures 1 and 3) from spectral analysis

of the IVUS backscatter data [15]. The imaging modality has

been validated in ex vivo and in vivo studies [16,17], and

employed in several prospective clinical trials to evaluate the

prognostic accuracy of VH-IVUS-defined plaque phenotypes

for major adverse cardiac events [18,19]. Acquired image data

were analysed, in accordance with consensus documents [20],

by a single experienced investigator, who demonstrated strong

reproducibility for total plaque and necrotic core areas [7,21].

Serial imaging data were co-registered in the axial and circum-

ferential directions to quantify changes in total plaque and

constituent (fibrous tissue, fibrofatty tissue, necrotic core and

dense calcium) areas. An experienced analyst manually co-

registered the baseline and follow-up images in the axial

direction with the aid of fiduciary anatomic landmarks [7]. Sub-

sequently, paired axial images were automatically co-registered

in the circumferential direction by employing a multi-variate

normalized cross-correlation algorithm, which has been verified

and validated across multiple lesion types [22]. Images were

divided into eight sectors (458 intervals), and VH-IVUS-derived

total plaque and constituent areas were quantified in each

sector (figure 3a). Area changes were determined by taking

the difference in values between corresponding sectors in co-

registered images (figure 3b). Progression was defined as a

positive change in plaque or constituent area from baseline to

follow-up, while regression was defined as a negative change.

Note that, because VH-IVUS images are acquired at approxi-

mately 0.5 mm intervals, plaque progression in the axial

direction, between consecutive images, is not captured. Note,
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too, that because changes in plaque areas are evaluated in focal

regions, which cover approximately one-eighth of the artery cir-

cumference, reported values are an order of magnitude less than

if evaluated around the complete circumference [7].

The spatial location of each VH-IVUS image was identified in

the computational geometry, and values of WSS magnitude and

oscillation were extracted at these locations and divided into

equivalent sectors (figure 4a). Thus, each sector had one value
each for time-averaged WSS magnitude, oscillatory WSS and

changes in total plaque and VH-IVUS-derived constituent

areas. Sectors that resided within a branching vessel were

excluded from the analysis; however, other sectors within that

cross-section were included (figure 4b,c). Furthermore, only

data in the LAD were included in the analysis, due to the difficul-

ties associated with co-registering VH-IVUS images in the LM

coronary artery, and imaging data were excluded if accurate



Table 1. Patient demographic and clinical characteristics. Continuous data
are reported as median (interquartile range). CAD, coronary artery disease.

characteristic all patients (n 5 20)

age (years) 54 (46 – 68)

male, n (%) 13 (65)

white, n (%) 14 (70)

body mass index (kg m21) 30 (27 – 36)

hypertension, n (%) 14 (70)

current smoking, n (%) 5 (25)

diabetes mellitus, n (%) 7 (35)

family history of CAD, n (%) 8 (40)

previous myocardial infarction, n (%) 2 (10)

coronary flow reserve 2.35 (2.03 – 2.59)

fractional flow reserve 0.90 (0.82 – 0.96)

baseline lipid profile

total cholesterol (mg dl21) 186.0 (168.0 – 212.5)

triglycerides (mg dl21) 115.5 (83.5 – 158.8)

high-density lipoprotein (mg dl21) 39.5 (33.3 – 52.8)

low-density lipoprotein (mg dl21) 118.5 (105.3 – 140.5)

C-reactive protein (mg l21) 2.7 (1.5 – 7.2)

follow-up lipid profile

total cholesterol (mg dl21) 139.0 (124.3 – 151.3)

triglycerides (mg dl21) 107.0 (75.8 – 138.8)

high-density lipoprotein (mg dl21) 42.5 (31.3 – 57.3)

low-density lipoprotein (mg dl21) 70.5 (54 – 87.5)
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Figure 5. Distribution of sectors across haemodynamic classifications. (a) Time-
averaged WSS and oscillatory WSS categories. (b) Co-localization of low
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axial and circumferential co-registration could not be perfor-

med (e.g. mismatch of baseline and follow-up images

acquired between identified landmarks, poor circumferential

co-registration correlation value [22]).
2.4. Statistical analysis
Continuous data are reported as mean+ s.d. or median and

interquartile range as appropriate. Categorical variables are pre-

sented as counts and proportions. To correct for systematic error,

introduced due to repeated measures within subjects, a random-

effects ANOVA was employed. p-values were adjusted for

multiple comparisons with the method of Scheffé. All statistical

tests were two-tailed, and p-values were derived from com-

parisons between haemodynamic categories. p , 0.05 was

established as the level of statistical significance. Statistical ana-

lyses were performed using the statistical package SPSS (v. 21;

IBM Corp., Armonk, NY, USA).
3. Results
Baseline and follow-up data were evaluated in the proximal

LAD of 20 patients. No adverse clinical events occurred in

the enrolled patient cohort during the study. Baseline demo-

graphic and clinical characteristics of the study cohort are

presented in table 1. A total of 1840 serial VH-IVUS image

pairs (median: 107; Q1–Q3: 63–122 per artery; 31.5–61 mm)

were analysed and divided into 14 235 sectors (median: 792;

Q1–Q3: 495–955 per artery) to examine the focal relationship
between baseline haemodynamics and six-month changes in

plaque area and composition. Sectors were distributed across

the three time-averaged WSS classifications with 22%, 42%

and 36% sectors in the low, intermediate and high time-

averaged WSS classifications, respectively (figure 5a), with

average values of 6.59+2.00, 16.67+4.21 and 45.24+
20.55 dynes cm22, respectively ( p , 0.0001, table 2). Sectors

were largely exposed to low oscillatory WSS with 83%, 7%

and 10% of sectors in the low, intermediate and high oscillatory

WSS categories, respectively (figure 5a). Furthermore, low

time-averaged WSS magnitude co-localized with high oscil-

latory WSS (i.e. low and oscillatory WSS) in 7% of sectors

and low oscillatory WSS (i.e. low and non-oscillatory WSS)

in 13% of sectors (figure 5b). Baseline VH-IVUS image charac-

teristics stratified by haemodynamic classifications are

presented in tables 2 and 3.
3.1. High time-averaged wall shear stress magnitude
leads to total plaque area regression and necrotic
core progression

Baseline time-averaged WSS magnitude greatly influenced

total plaque area progression and changes in VH-IVUS-

derived plaque constituent areas over the six-month

follow-up. Sectors subjected to low WSS magnitude demon-

strated a trend towards an increase in total plaque area

(0.007+0.010 mm2), which was significantly different from

the progression patterns observed in areas of intermediate

(20.032+0.006 mm2; p , 0.001) and high WSS (20.028+
0.007 mm2; p , 0.001), both of which exhibited a decrease

in total plaque area ( p ¼ 0.64; figure 6a). Evaluation of

changes in plaque constituent areas revealed that sectors

exposed to low WSS magnitude exhibited a significant

increase in necrotic core ( p , 0.001) and dense calcium

( p , 0.05) area compared with areas of intermediate WSS

(figure 6b). However, no significant change in fibrous tissue

area was observed in the low WSS group, while significant

regression occurred in the intermediate WSS group ( p ,

0.001). Comparison of changes in constituent areas between

intermediate and high WSS magnitude sectors revealed

greater progression of necrotic core ( p , 0.001) and dense



Table 2. Baseline VH-IVUS data stratified by haemodynamic classifications. Data are reported as mean+ s.d. WSS, wall shear stress.

low WSS intermediate WSS high WSS p-valuea

sectors, n 3127 5964 5144

WSS magnitude (dynes cm22) 6.59+ 2.00 16.67+ 4.21 45.24+ 20.55 ,0.0001

oscillatory WSS (8) 56.14+ 56.99 23.12+ 33.18 11.65+ 17.66 ,0.0001

plaque area (mm2) 0.40+ 0.53 0.43+ 0.58 0.49+ 0.66 0.11

fibrous area (mm2) 0.25+ 0.34 0.26+ 0.36 0.28+ 0.38 0.52

fibrofatty area (mm2) 0.05+ 0.11 0.04+ 0.01 0.06+ 0.14 0.02

necrotic core (mm2) 0.07+ 0.15 0.09+ 0.17 0.11+ 0.18 0.08

dense calcium (mm2) 0.03+ 0.11 0.04+ 0.01 0.05+ 0.12 0.13
aDerived from comparison across three WSS categories.

Table 3. Baseline VH-IVUS data stratified by oscillatory WSS classifications in low time-averaged WSS magnitude sectors. Data are reported as mean+ s.d.
WSS, wall shear stress.

low WSS magnitude and
low oscillatory WSS

low WSS magnitude and
intermediate oscillatory WSS

low WSS magnitude and
high oscillatory WSS p-valuea

sectors, n 1785 413 929

WSS (dynes cm22) 6.98+ 1.86 6.17+ 2.05 6.02+ 2.08 ,0.0001

oscillatory WSS (8) 12.42+ 10.96 67.53+ 13.23 135.08+ 25.62 ,0.0001

plaque area (mm2) 0.25+ 0.40 0.45+ 0.56 0.66+ 0.64 0.001

fibrous area (mm2) 0.17+ 0.26 0.25+ 0.33 0.41+ 0.42 ,0.0001

fibrofatty area (mm2) 0.03+ 0.09 0.05+ 0.16 0.07+ 0.13 0.01

necrotic core (mm2) 0.04+ 0.10 0.09+ 0.16 0.13+ 0.20 0.21

dense calcium (mm2) 0.01+ 0.05 0.06+ 0.15 0.05+ 0.15 0.60
aDerived from comparison across three haemodynamic categories.
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calcium ( p , 0.001) in sectors exposed to high WSS. Similar

to sectors exposed to low WSS, high WSS sectors demon-

strated necrotic core progression (0.008+0.004 versus

0.015+0.004 mm2; p , 0.05); however, sectors subjected to

high WSS demonstrated greater regression of fibrous tissue

than low WSS sectors (20.031+0.006 versus 20.002+
0.007 mm2; p , 0.001).

3.2. Coincidence of low and oscillatory wall shear stress
promotes total plaque area regression and necrotic
core progression

In a low time-averaged WSS magnitude environment, the

presence or absence of oscillatory WSS resulted in distinct

VH-IVUS-defined plaque progression patterns over six

months. Sectors exposed to low and oscillatory WSS demon-

strated total plaque area regression (20.026+0.020 mm2),

while areas of low and non-oscillatory WSS exhibited an

increase in total plaque area (0.028+ 0.010 mm2; p , 0.001;

figure 7). Examination of changes in VH-IVUS-defined con-

stituent areas revealed that low and oscillatory WSS was

associated with a significant decrease in fibrous ( p , 0.001)

and fibrofatty ( p , 0.001) tissue areas when compared

with sectors subjected to low and non-oscillatory WSS

(figure 7), with similar progression of necrotic core ( p ¼
0.82) and dense calcium ( p ¼ 0.40). Figure 8 presents repre-

sentative IVUS images that include sectors exposed to
baseline haemodynamic values across the haemodynamic

classifications, as well as the co-registered follow-up image

and the sector progression values.
4. Discussion
This is the first clinical study to investigate the effect of

low and oscillatory WSS on plaque progression and trans-

formation in patients with CAD treated with optimal

medical therapy. We observed that sectors exposed to low

and oscillatory WSS were associated with regression of total

plaque, fibrous and fibrofatty tissue area, but progression of

necrotic core and dense calcium, whereas sectors subjected

to low and non-oscillatory WSS demonstrated progression

of total plaque, fibrous tissue, necrotic core and calcium

and regression of fibrofatty tissue (figure 7). Similarly, high

time-averaged WSS magnitude demonstrated plaque

regression, as well as progression of necrotic core and

dense calcium (figure 6).

Our results are consistent with previous clinical studies

reporting that baseline low WSS magnitude promotes total

plaque area progression and high WSS leads to plaque area

reduction [7,8,23]. However, these studies employed spatially

averaged haemodynamic data, either around the lumen cir-

cumference or within a coronary segment, thus limiting the

range of WSS values evaluated and the focal nature of these

data. Employing a developed framework that allows for the
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examination of the focal association between haemodynamics

and VH-IVUS-defined plaque progression (figures 3 and 4),

our observations confirm that WSS magnitude modulates

changes in total plaque size and VH-IVUS-defined constitu-

ent areas. Further, we now demonstrate for the first time in

humans that oscillatory WSS significantly affects CAD pro-

gression patterns. Notably, our data indicate that WSS

magnitude and oscillation may act cooperatively in affecting

coronary lesion progression. Specifically, in areas of low WSS

we observed necrotic core progression and total plaque size

regression or progression depending on the presence or

absence of oscillatory WSS, respectively. Thus, these data

suggest that a haemodynamic environment characterized

by either low and oscillatory WSS or high time-averaged

WSS magnitude is associated with transformation towards

a more vulnerable plaque phenotype [24].

In addition to the compelling experimental evidence

linking haemodynamics to atherogenesis and early lesion

formation [25], the data also suggest a role of WSS in

atherosclerosis progression and plaque vulnerability. In a
pro-atherogenic region, low time-averaged WSS has been

linked to increased expression of matrix metalloproteinases

(MMPs) [26], changes in endothelial cell morphology [27],

and vascular smooth muscle cell (VSMC) migration and

proliferation [28]. A study that used a perivascular cast to

induce altered haemodynamics in a mouse model of athero-

sclerosis demonstrated a vulnerable plaque phenotype in

areas of lowered WSS and more stable lesions in areas of oscil-

latory, but not lowered, WSS [29], which contrasts the

presented results; however, limitations exist in studying

atherosclerosis in murine models [30]. In diabetic, hypercholes-

terolaemic pigs, arterial segments exposed to persistently low

WSS magnitude showed increased plaque size, decreased inti-

mal VSMC content, increased expression of collagenases and

collagenolytic activity and thinning of the fibrous cap [31].

These observations are consistent with data from the present

study, as we observed total plaque progression in areas of

low WSS. However, the role of oscillatory WSS could not be

determined in that study [31], as the computational methods

were limited by a steady flow assumption. Thus, it is possible
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that lesions in two different haemodynamic environments, low

WSS and low and oscillatory WSS, were collectively analysed.

More recently, it was observed in proprotein convertase

subtilisin/kexin type 9 (PCSK9) ‘gain-of-function’, hypercho-

lesterolaemic minipigs that regions of low and multi-

directional WSS, which was quantified by transverse WSS

(transWSS) [32], led to the formation of advanced coronary

lesions, including TCFAs [6], which supports the clinical obser-

vations presented here. Furthermore, the study [6] showed that

transWSS alone led to distinct plaque phenotypes, high-

lighting the role of WSS magnitude, oscillatory WSS and

their combination in atherosclerosis progression and plaque

vulnerability. We note that transWSS and WSSAD are analo-

gous haemodynamic parameters in identifying focal regions

where there exist large deviations of instantaneous WSS vectors

from the main flow direction. Finally, our observation that sec-

tors exposed to high WSS magnitude demonstrated progression

patterns towards lesions with high-risk features is supported by

experimental data that we have previously discussed in detail

[7]. It has been shown that high WSS promotes increased pro-

duction of plasmin, transforming growth factor-b, nitric oxide,

bone morphogenic protein-4 and MMPs [33–35], each of

which contribute to increased lesion vulnerability.

It cannot be overemphasized that CAD progression, vul-

nerable plaque formation and plaque rupture are focal

pathophysiological episodes. Indeed, atherosclerotic lesions

are classified by focal morphological and histological features

[36] and plaque ruptures are a local disruption of a thin fibrous

cap overlying a large necrotic core [37]. Thus, examination of

variables that influence these events should be evaluated at

an equivalent scale. We acknowledge that previous investi-

gations have provided a critical understanding of the role of

WSS in the natural history of coronary atherosclerosis; how-

ever, nearly all studies evaluating the relationship between

WSS and CAD progression spatially averaged the data over

the lumen circumference [7], axial ‘strips’ [38] or coronary seg-

ments [8], all of which reduce data width and the spatial

dependence of the associations [39].
We have previously observed a threefold reduction in the

range of time-averaged WSS values when data are averaged

around the circumference versus evaluation in focal regions,

and considerable differences between the two analysis tech-

niques in the association of WSS and VH-IVUS-defined

plaque progression [9]. In the current investigation, averaging

time-averaged WSS and oscillatory WSS data around the cir-

cumference yielded no segments of low and oscillatory WSS,

which highlights the advantage of our analysis framework to

capture local flow features (figure 2). Our current data indicate

that CAD progression and plaque phenotypic transformation,

which were evaluated at a focal level, are associated with the

baseline haemodynamic environment that was quantified at

the same length scale. The novel approach presented herein

provides motivation for future investigations that seek to

identify asymptomatic coronary lesions that precede rapid

lumen obstruction or an acute thrombotic event.

As coronary plaque rupture is the underlying aetiology for

a majority of acute coronary syndromes [37], early identifi-

cation of these high-risk plaques is of significant clinical

importance. Adverse clinical outcomes have been individually

associated with plaque burden, composition and pheno-

type; vessel remodelling patterns; and the surrounding

haemodynamic environment. Studies have shown that the

combination of distinct lesion characteristics demonstrates

higher predictive value than a single characteristic in identify-

ing lesions at greatest risk for future cardiac events [40].

However, to date, the required tools to identify focal WSS

patterns at an individual coronary lesion have been absent.

As a result, the complexity of the haemodynamic environ-

ment that includes focal regions of high WSS (plaque throat)

juxtaposed to focal regions of low and oscillatory WSS

(downstream of plaque), both of which are linked to plaque-

destabilizing pathobiological mechanisms [35], cannot be

accurately captured and characterized in humans. Our present

findings demonstrate that WSS magnitude and oscillation are

critical in identifying progression patterns of increased vulner-

ability and suggest that identification of these unique WSS

patterns, in conjunction with other lesion characteristics, will

afford increased predictive value and clinical prognostication

of high-risk coronary lesions.
4.1. Study limitations
The limitations of this study should be noted. First, the limited

study size of patients with stable, non-obstructive CAD

treated with aggressive medical therapy resulted in no clinical

events in the study cohort during the investigation. Neverthe-

less, our novel analysis techniques afforded the statistical

power to detect significant changes in total plaque and con-

stituent areas across the haemodynamic categories. Second,

we used serial radiofrequency intravascular ultrasound ima-

ging (i.e. VH-IVUS) to quantify CAD progression. Although

one study questioned the accuracy of VH-IVUS in identify-

ing necrotic core size [41], several identified flaws limit the

clinical significance of the conclusions [42]. Furthermore, the

PROSPECT study identified VH-IVUS-defined TCFAs in com-

bination with greyscale as an independent predictor of plaque

rupture [18]. Third, we acknowledge that arterial remodelling,

which is defined as the change in EEM area from baseline to

follow-up, is an important component of CAD progression

and clinical manifestation of the disease [43]; however, as

this study was focused on the focal association between
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haemodynamics and CAD progression, we chose not to

analyse remodelling or other circumferentially defined par-

ameters that confound the focal analysis. Fourth, there are
limitations in our computational methods that should be

acknowledged. Blood was assumed to be an incompressible

Newtonian fluid; however, the Reynolds (Re) numbers in
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these models were moderate (Re � 250–400), where the non-

Newtonian behaviour of blood is minimal [44], and an

exploratory study in one of our models resulted in minimal

differences (less than 1%) in time-averaged WSS values

when incorporating a non-Newtonian fluid model (Carreau

model [45]). Also, we assumed a rigid wall and neglected cor-

onary motion. We acknowledge that these are a significant

approximation of in vivo conditions; yet, the lack of a validated

fluid–solid interaction computational framework to quantify

the 3D coronary artery mechanical environment and proces-

sing techniques to accurately quantify coronary motion from

cine angiography (currently) restricts inclusion of these

advanced modelling techniques. Finally, the results presented

do not establish a causal relationship between coronary

haemodynamics, CAD progression and plaque vulnerability

in humans. Experimental models are better suited to advance

mechanistic understanding of the role of haemodynamics in

atherosclerosis progression, and larger clinical trials deploying

such sophisticated methodology for evaluation of coronary

haemodynamics are challenging, but warranted.
2

5. Conclusion
We demonstrate that both WSS magnitude and oscillation are

closely associated with coronary plaque progression over six

months in patients with non-obstructive CAD treated with

optimal medical therapy. Using an analysis framework to

examine the focal association between coronary haemo-

dynamics and CAD progression, we report that, in a low
WSS environment, focal regions (sectors) subjected to an oscil-

latory WSS exhibit regression of total plaque area, while non-

oscillatory WSS sectors demonstrate total plaque progression.

Furthermore, sectors exposed to low and oscillatory WSS exhi-

bit a decrease in fibrous and fibrofatty tissue and an increase in

necrotic core and dense calcium, implying a phenotypic trans-

formation towards a more vulnerable phenotype [24]. Future

clinical studies that rigorously evaluate the haemodynamic

environment and CAD progression at the focal level will pro-

vide significant insight on the prognostic utility of WSS in

the early identification of high-risk coronary lesions.
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