Preparation and optimization of elastin/plasma hydrogels for skin engineering

Author: Erika Meyer Kvalem Soto

Director: Marija Stojic June 2019

This thesis is written for the degree of Biomedical engineering at UC3M

Abstract

The aim of this study is to improve the physicochemical limitations of human plasmabased autologous bilayer dermo-epidermal skin equivalents developed by Tissue Engineering and Regenerative Medicine Group (TERMeG) at Universidad Carlos III of Madrid (UC3M). The application of these artificial grafts in clinical use is currently limited due to their fragility and high degradation rates. They shrink rapidly and therefore are difficult to handle. In order to overcome the aforementioned mechanical issues, functionalized Elastin-like recombinamers (ELRs) were introduced into the skin substitutes. Elastin is an inherent protein of the skin. It has low elastic modulus and high resilience, hence it is a great complement to reinforce collagen tensile strength providing skin with elastic and recoiling behavior. Elastin percentage in the dermis is known to be an increasing gradient from the epidermis to the dermis of 1% to 5%. The scope of this work is to prove the effectiveness of introducing functionalized ELRs into the grafts by quantifying the improvements in its physicochemical properties. This has been done through swelling, contraction and protein release studies. Cell viability of both primary human keratinocytes (hKCs) and primary human fibroblasts (hFBs) has also been measured. An MTS test was performed in order to ensure hKCs attachment to the surface of the graft. Furthermore, scanning electron microscope (SEM) pictures were obtained to characterize the interior of the plasma-elastin matrix. The collected data suggested that the incorporation of functionalized Elastin-like recombinamers (ELRs) were favorable for the autologous plasma-based hydrogels. They imporved the shrinkage restraint without affecting keratinocyte viability on the first two days. More experimental data should be collected to obtain evidence on fibroblast viability and keratinocyte viability on the long term.

Declaration

I confirm that the contents of this dissertation are originally written by me and except when reference I have not copied the work of others.

Author: Erika Meyer Kvalem Soto June, 2019

Acknowledgements

This work is dedicated to me for the big effort I have put into it.

I want to thank my parents, Valentina and Geir, for giving me the opportunity to learn and to study at UC3M and at the University of Utah. For always trusting me and for their support every single day. This is also decidated to my sister Catherine and Rafa that encourage me to keep going and are always by my side.

I want to truly thank Diego Velasco Bayon for giving me the opportunity to work at TERMeG in this project. And special credit to Marija Stojic who has taught me the art of doing things properly and has been an enormous help in this process.

Special recognition to all the people I have met along my journey at UC3M and to great friends like Alex Pasek. I also want to thank Carlos who helped me through tough times.

To Raul for being an inspiration and all the members of Cara Sur that genuinely motivated me at the beginning.

Thanks to Alberto Garca Barriuso, for being my first mentor.

Finally, thanks to Valentina Carappella for making me belive in myself.

Contents

1	Intr	roduction					
	1.1	Summ	ary	14			
	1.2	Motiva	ation	15			
	1.3	Object	vives	16			
2	Bac	ckground					
	2.1	Skin s	tructure	17			
		2.1.1	The epidermis	17			
		2.1.2	The dermis	18			
		2.1.3	Basal membrane and subcutaneous tissue	18			
	2.2	Skin n	nechanical properties	19			
		2.2.1	Nonlinear stress-strain relationship	20			
		2.2.2	Viscoelasticity and anisotropy	20			
	2.3	Wound	l healing	21			
		2.3.1	Processes in wound healing	22			
			2.3.1.1 The fibrin clot \ldots	22			
			2.3.1.2 Reepithelization	23			
			2.3.1.3 Contraction of the wound	23			

3 Rationale				25
	3.1	Human	plasma-based fibrin autologous hydrogels	25
		3.1.1	Hydrogels	26
		3.1.2	Fibrin	26
		3.1.3	Autologous approach	27
	3.2	Elastin	Like Recombinamers	28
4	Mat	terials a	and methods	30
	4.1	Prepara	ation of plasma based hydrogels	31
	4.2	Prepara	ation of elastin/plasma-based hydrogels	31
	4.3	Gelatio	n time	33
	4.4	Mass s	welling	33
	4.5	Hydrog	el contraction	34
	4.6	Hydrog	el contraction with human fibroblasts	34
		4.6.1	Thawing and seeding cells protocol	35
		4.6.2	Counting cells using hemocytometer	35
		4.6.3	Protocol for cell mediated contraction	36
	4.7	Bradfor	rd assay	37
	4.8	Primar	y Human Keratinocyte Viability	38
	4.9	Scannin	ng electron microscope	39
		4.9.1	Sample preparation	39
			4.9.1.1 Drying	39
			4.9.1.2 Supercritical fluid extraction (SFE)	40
			4.9.1.3 Gold sputtering	41

	4.10	Embedded Human Fibroblast Viability	42		
		4.10.1 Hydrogel Preparation for Live/Dead assay	43		
		4.10.2 Staining	44		
		4.10.3 Confocal microscope	45		
5	Res	ults	46		
	5.1	Gelation time	46		
	5.2	Mass swelling	47		
	5.3	Hydrogel contraction	49		
	5.4	Bradford assay	51		
	5.5	Hydrogel contraction with human fibroblasts	52		
	5.6	Primary Human Keratinocyte Viability	54		
	5.7	Scanning electron microscope (SEM)	54		
	5.8	Embedded Human Fibroblast Viability	56		
6	Dis	scussion			
	6.1	Gelation time	59		
	6.2	Mass swelling	60		
	6.3	Contraction	60		
	6.4	Bradford assay	61		
	6.5	Contraction with human fibroblasts	61		
	6.6	Primary Human Keratinocyte Viability	62		
	6.7	Scanning electron microscope images	63		
	6.8	Embedded Human Fibroblast Viability	63		

7	Conclusion	65
8	Future work	67
9	Project budget	68
10	Legal framework	70
11	Socio-economical study	71
Gl	ossary	72
Ap	opendix A. Standard curve for Bradford assay	74
Ap	opendix B. Scanning electron microscope increased size images	75
Bi	bliography	77